图检索增强生成(GraphRAG)已成为大模型解决复杂领域知识问答的重要解决方案之一。然而,当前学界和开源界的方案都面临着三大关键痛点: 开销巨大:通过 LLM 构建图谱及社区,Token 消耗大,耗时长,经济与时间成本高昂。 效果瓶颈:对复杂问答的解析精度 ...
随着时间的推移,人工智能领域不断发展,像检索增强生成(RAG,Retrieval-Augmented Generation)这样的传统模型在数据检索方面取得了重大进展,但它们在理解深层上下文含义方面仍然存在困难。GraphRAG提出了一种全新的解决方案,它将图技术与先进的检索方法相结合 ...
What if your AI could not only retrieve information but also uncover the hidden relationships that make your data truly meaningful? Traditional vector-based retrieval methods, while effective for ...